n %
= L

\ qﬁfﬁrﬁq”
Securing Off-Board Vehicle Diagnostics

Prepared by Sharika Kumar* and Jeremy Daily*
*Accelera by Cummins/The Ohio State University, *Colorado State University

Accelera

Agenda Off-Board Commercial Vehicle Diagnostics

Shim DLL Attack Model

1ISO14229 Unified Diagnostic Services (UDS)

Securing XCP Protocol

Conclusion

= Medium and Heavy Duty (MHD) Network ’
Communication

= MHD networks are typically built on SAE J1939 over CAN 2.0b (Multi-master serial bus, features

unicast and broadcast messages, transport fragmentation/reassembly)
= Diagnostic application often run on a Windows-based PC or laptop using an RP1210 compliant vehicle

diagnostics adapter.

Public port that
diagnostic tools
Connects to

~= \ahicle Diagnostic Adapters (VDAs)

VDASs translates vehicle communications Diagnostics Application

to a diagnostic application.

American Trucking Association’s (ATA)

)) Select RP1210 Device
Technology and Maintenance Council

. . . . f /
(TMC) initiated RP1210 in the 1990’s to — E—
. ol /endaor T
enable VDA interoperability. l Vendor 2 RP1210 APT
. \
RP1 21 0 describes a stapdard API for Vendor 1 Driver DLL Verdor 2 Drrver DLL
a Windows PC application to l |
communicate with the network. Vendor 1 VDA Vendor 2 VDA

A trusted maintenance technician is often \/ ‘
granted access to connect a VDA to the 1
diagnostic port to exercise the off-board — , ‘ =<5

n Vehicle Network d

communications.

The concept of RP1210

e Simple RP1210 Example

Minimal implementation to request a VIN

The message structure depends on the type of client

> J1939
o CAN
> J1708

RP1210_ClientConnect(...)
RP1210_SendCommand(...)
RP1210_SendMessage (...)
RP1210_ReadMessage(...)
RP1210_ClientDisconnect(...)

Load the routines for a particular protocol on the correct channel
Send command to change the behavior or property of the VDA
Send a message through the VDA to the vehicle network

Read a message from the vehicle network

Disconnect the client and close the driver

e Simple RP1210 Example, cont.

Source available at https://github.com/SystemCyber/ShimDLL

Load Client
Library Connect

Loads a DLL from the Establish a
VDA vendor found in connection with
C:\Windows\System32 | 1J1939 at 250k

Send

Command

Set all filters to
pass

Read
Message

Poll messages
and look for VIN

Find
VIN?

Send
Message

Send Request
message for VIN

Display VIN

Client
Disconnect

https://github.com/SystemCyber/ShimDLL

e Simple RP1210 Example, cont.

Developer Command Prompt X + o~

simpleRP1210.exe CIL7R32.d11 1 | — -

39 2A 24 C4 26 FO 8O 03 80 FF FF FF
39 2A 27 08 92 FE 80 @7 80 FF FF 0e
Developer Command Prompt X + 39 2A 29 57 64 FO B8O 83 00 FF BE 7D
39 2A 36 65 33 FO 0O 06 08 FF FF FF

C:\Users\Jeremy\Documents\GitHub\ShimDLL>simpleRP1210.exe CIL7R32.d1l 1 39 2A 49 DF DF FE 8@ 86 68 FF 7D Fo
Starting the simpleRP1216 program. 39 2A 4C 2F 94 FD 60 06 08 FF 00 FF

Command-line Arguments: 39 2A 72 E2 9B FD 066 66 80 FF FF FF
argv[@]: simpleRP1210.exe 39 2A 75 1F 83 FO 66 83 60 FF C3 FF
argv[1]: CIL7R32.d1ll 39 2A 77 74 64 FO PO B3 80 FF BE 7D

argv[2]: 1 39 2A 84 93 23 FO 06 63 08 FF 80 FF
The name for the RP1218 driver to be used is CIL7R32.dll 39 2A 86 E3 96 FC PO 06 68 FF B8 FF

The RP1216 Device ID selected is 1 39 2A 97 FE DF FE 00 06 00 FF 7D e

Argument substring is .dll
Great! The first command line argument has .dll in it. There's a chance it e PE
|39 2A CU4 8D 64 FO 60 83 80 FF BE 7D

Loading external RP1218 library...done.
Loading RP1216 functions...done. 39 2A D2 AD 57 FC 80 06 00 FF 00 0e

Using RP1216_ReadVersion...done. 39 2A DU FA 01 FO 60 66 88 FF FF FF
DLL Major Version: 1 39 2A D7 44 1A FO 00 64 @8 FF FF FF
DLL Minor Version: © 39 2A E5 FE 26 FO 00 03 08 FF FF FF
API Major Version: 3 39 2A E8 U4 DF FE 00 06 08 FF 7D Fo
APL Minor Version: 8 39 2A F9 74 33 FO 00 06 08 FF FF FF
Using RP1218_ClientConnect...done. 39 2A FB C5 F@ FE 08 86 88 FF FF EF

The J1939 Client Identifier is @
Using RP1216_SendCommand for set filters to pass... 39 2B 12 DC B4 F6 60 83 86 FF OE 7D
39 2B 34 3D DF FE 80 86 68 FF 7D Fo

The return code for setting filters to pass is @
4A 19 61 68 4O FD B8 86 86 FF FF FF 80 FF FF FF FF 39 2B 36 78 03 Fo 00 03 88 FF C3 FF

4A 19 63 AF DF FE @0 06 00 FF 7D A@ 28 80 FB FF FF 39 2B 38 D3 F2 FC 80 086 08 FF FA FF

UA 19 66 62 B3 FO 00 03 80 FF C3 00 00 FF FF OF FA F 2B 47 B8 23 FO 00 03 00 FF ee FF

4A 19 68 3F F2 FC 80 06 80 FF FA FF FF FF FF FF FF . 2B 5D 67 F1 FE 08 06 00 FF FF FF =
UaA 19 74 EA 23 FO 88 83 08 FF 80 88 FF FF FF FE FF 2B 68 F7 68U FB 88 83 88 FF BE 7D 13}
4a 19 8A 99 F1 FE 00 086 80 FF FF FF FE FF FF FF FF | 2B 6E F'7 DD FE 00 66 80 FF FF FF

uA 19 8E 26 64 FO 00 03 00 FF ©E 7D 7D 00 00 00 OF 2B 82 6U DF FE 86 86 88 FF 7D Fo }A(S
UA 19 AF 91 DF FE 00 06 00 FF 7D A@ 28 80 FB FF FF

LA 19 C2 E2 C5 FC 80 06 80 FF FF FF FF FF FF FF FF
UA 19 C5 36 A3 FD 80 04 80 FF FF FF FA FF FF FF FF
LA 19 C7 77 60 85 00 06 00 FF FF FF FF FF 28 5A FF .
LA 19 C9 C1 1A FO 80 68U 88 FF FF FF FF FF FF FF FF Program ending.

UA 19 D8 A6 26 FO 00 83 80 FF FF FF F@ FF FF FF FF Number of SendMessages 1
4A 19 DA EB 92 FE @0 07 00 FF FF @0 50 FF FF FF 0@ Number ReadMessages 1641

2B 87 98 EC FE 00 83 68 FF 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2/
| Found PGN 652680

C:\Users\Jeremy\Documents\GitHub\ShimDLL>|

Accelera

Observations

It worked...
* No need to verify the VDA dIl.
« Read and Write Messages over the network (i.e. this is a trusted operation)

* I|dentification of the vendor DLL is based only on filename.
« Can rewrite the filename for the existing legitimate DLL

What if we created a new DLL that
connected to the legitimate DLL and

presented the RP1210 functions to ShimDLL.dl
the diagnostics tool?

e Attacking Vehicle Diagnostic Adapter Drivers 7

[RP1210 based Diagnostic Application] [RP1210 based Diagnostic Application }
) Shim.DLL

[Vendor RP1210.DLL | |3’ m
I 3 [Vendor RP1210.DLL

{ Device Driver t g
1 Device Driver

NTDLL (Interface between user & kernel) J . f .
NTDLL (Interface between user & kernel)

_________l.________.

[Kernel (USB, WiFi, Bluetooth Comms.) } _________ |_ —————————

[Kernel (USB, WiFi, Bluetooth Comms.)]

Communication stack within the PC/laptop

Attack uses inserted shim DLL to tamper RP1210 communications

1 short _ declspec(dllexport) WINAPI RP1210 ReadMessage(
2 short nClientID, Function exposed to 10
3 unsigned char *fpchAPIMessage, diagnostic software
4 short nBufferSize,
5 short nBlockOnRead){
6 int status = ERR_DLL NOT INITIALIZED;
7 if (Xternal RP1210 ReadMessage != NULL){
8 status = Xternal_RPlZl@_ReadMessage(nClientID,
9 fpchAPIMessage from vendor dll
J
10 nBufferSize,
11 nBlockOnRead) ; Buffer with vehicle
12 } network data
13 /* Manipulate Data herel!l!*/
14 if (status > 0){
15 // Find PGNs that are interesting
16 unsigned long pgn = fpchAPIMessage[4] + (fpchAPIMessage[5] << 8) + (fpchAPIMessage[6] << 16);
17 if (pgn == PGN4VIN){ // Look for the VIN to break
18 /*Directly manipulates the bytes in the buffer.*/
19 fpchAPIMessage[21] = 'A’;
20 fpchAPIMessage[22] = 'T';
21 fpchAPIMessage[23] = 'T';
22 fpchAPIMessage[24] = 'A’;
23 fpchAPIMessage[25] = 'C';
24 fpchAPIMessage[26] = 'K';
25 fpchAPIMessage[27] = '!";
26 }

N
N
-

Falsified Information displayed on a Diagnostic Tool 11

40 77 9 FF FF G

40 78 56 FF FF v

40 78 C1 8F 02 LIto(\Ae

40 79 F7 F1 ee a3

40 7A EC 4A 4E 58 44 4A 41 54 54 41 43 4B 21 1HSHWSINXDJATTACK!!
PGN 65260
Program ending.

Number of SendMessages 1

Number ReadMessages 1135

C:\Users\jdaily\Documents\GitHub\ShimDLL>

* Data manipulations take place on the diagnostics computer, not the vehicle network
» Attacker does not need physical access to the vehicle, just admin privileges on Windows
* VDAs and their DLLs are from third party vendors

e Similar issues exist with J2435 for passenger cars

Accelera

Implementation Details

Network traffic traces
showing an example of
utilizing Unified Diagnostic
Services (UDS) Service $84
to secure diagnostics
communication.

Contributions

Security Sublayer for UDS

AUTOSAR does not specify
diagnostic communication
manager (DCM) Security
Sublayer. Our complex
device driver (CDD) based
workaround solution
implements the Security
Sublayer functionality

Dynamic Session Keys

Sequence diagram of the
keys generated dynamically
during session
authentication used to
encrypt the session protects
the session from brute
attacks

12

Application to XCP

An example of using the
security sublayer and apply
it to calibration protocol,
which can be used to
enhance supply chain
protections.

Accelera

Cyber Defense for Diagnostic Interfaces

Controller Application

o

UDS Security Sublayer

o

Network Layer
Datalink Layer

Physical Layer

a

UDS Diagnostic
Application

o

UDS Security Sublayer

o

RP1210 Layer

o

Network Layer
Datalink Layer

Physical Layer

Untrusted
Communications

Security architecture where external layers are untrusted

13

Accelera

Complex Device Drivers based Security Sublayer for UDS

Security

Protocol Data Unit (PDU) Router
(PduR)

Bus Transport Protocol
(ex: ISO-TP)

Bus Interface
(ex: CAN Interface)

Driver
(ex: CAN controller)

Microcontroller

Message Handling Layer
(Complex Device Driver)

Message Authentication Layer
(Complex Device Driver)

Protocol Data Unit (PDU) Router
(PduR)

Bus Transport Protocol
(ex: ISO-TP)

Bus Interface
(ex: CAN Controller)

Driver
(ex: CAN driver)

Microcontroller

14

UDS Session Encryption with Dynamic Keys

Accelera @ 15
Tool
Diagnostic Tool ECU Authentication
ECU
Key Exchange Authentication

Enc (Tool Challenge Seed
+ Session Key Information)

Derive common session key - KEY3

/ Derive common session key - KEY3
S

Dynamic Key -) -—

Agreement
Encrypted Session using]
Secured Session
Communication
Enc (ECU Challenge Seed
+ Session Key Information) Diagnostic Tool ECU

+ Tool Challenge Seed

@ continued in next column

acelers Insight into Unsecured and Secured

Communications

Tester Tool ECU

Read data with identifier OxO0FF

»
0x22 0x00 OxFF
The data identifier OxO0FF is 0x42
«
0x62 0x00 OxFF 0x42
Tester Tool ECU

Unsecured UDS Read Data by Identifier Service

Security costs 5x the network
traffic for a simple parameter.

UDS Read Data by Identifier Service
secured using UDS Secured Data
Transmission Service 848

Tester Tool ECU

Fead data with identifier 0x00FF using secure mode((=84)

4

010 0x18 0xB4 000 019 013 000 0x00

Ready to receive cipher in blocks of B

f

0x30 0x08 000

First 5 bytes of encrypted request

L J

021 0oe00 0x00 QbcAD 078 032 OxPE Ox9F

Mext 7 bytes of encrypted request

v

022 029 0x6E 0xDF 001 (30 055 018

Last 4 bytes of encrypted request

L J

(o2 3 OF OxEB Ox9A 0x2C

The encrypted response data for identifier (x00FF

&

010 018 OxC4 0x00 018 000 000 000

FReady to receive cipher in blocks of 8

A4

0x30 0x08 000

First 5 bytes of encrypted response

I 9

0x21 000 000 06D 0x7F Ox1D OecAl OxEE

Hext 7 bytes of encrypted response

3

(22 Oee3F OxAC OxSF OxF7 0237 0xCC O34

Last 4 bytes of encrypted response

r

023 0x50 0x5C 0x52 0=93

16

Acce

o B~ W N

lera

XCP Protocol and its Security Challenges

. Association for Standardization of Automation and Measuring Systems

(ASAM) defines XCP

. Primarily used to measure and calibrate ECUs in development

. Address oriented protocol (memory is exposed in network traffic)

. No inherent protocol security in the specification

. Session key length is limited to 1 byte per channel, which limits the

implementation of robust authentication schemes

17

Accelera

Securing XCP Sessions

XCP Tool ECU

Connect to Slave in normal mode in a secure way

0x18 0x84 0x00 0x19 0x13 0x00 0x00 0x00

First 7 bytes of encrypted request

A J

0x00 0xAS5 0xC5 0x33 0xDB 0x49 Ox5E 0x78

Next 8 bytes of encrypted request

18

XCP Tool ECU 0x99 OxA2 0xCO 0x17 0x05 0xF1 Ox25 039
Connect to Slave in normal mode Last 1 bytes of encrypted request
» =
OxFF 0x00 | i
Connection accepted at protoceol version XCP 1.1 e Connection accepted secure response
-
| Ox18 0cC4 000 018 0x13 0x00 0x00 0x00
0xFF 0X05 0x00 0x08 0x00 0x01 0x01 |
First 7 bytes of encrypted response
i Ce 0x00 0xD9 0xBA OxEA 0xF3 OxAQ 0x30 OxAD
Mext 8 bytes of encrypted response
<
Unsecured XCP Connect Command '
012 0x32 OxA3 O0xB3 OxDA OxF3 0xCD Oxb4
Last 1 bytes of encrypted response
Th?;_e 'fs a 4x lnc.rease 'n ni;c:work XCP Connect Command secured by expanding - ==
traffic for securing XCP traffic UDS Secured Data Transmission Service
XCP Tool

ECU

e Summary and Conclusions

Summary

1. Demonstrated the ShimDLL.dll idea of a machine-in-the-middle attack.

2. Showed a UDS Security Sublayer inserted into an AUTOSAR stack

3. Provided an example of utilizing the UDS Secure Data Transmission
service $84

4. Compared sequence diagrams between unsecured and secured
communications

5. Extended the approach to the ASAM Calibration Protocol (XCP)

Limitations:
1. Pre-shared keys need to be in memory on the diagnostics PC
2. Details on key management are not discussed

3. Decreased data throughput - Security comes at a cost!

19
Timing Parameter Unsecured Secured
UDS P2 CAN_Server 50 ms 50 ms
UDS P2* CAN_Server 5000 ms 5000 ms
XCP Timeout 1000 ms 1000 ms
Overhead for a Single-Frame UDS Request and Respond
Request and Response Count 2 10
Processing Time 5.273 ms 5.669 ms
Response Time 5.533 ms 27.618 ms
Overhead for a Single-Frame XCP Request and Respond
Request and Response Count 2 8
Processing Time 0.2 ms 0.9 ms
Response Time 0.2 ms 2.415 ms

Accelera Thank You 20

Contact Information

Sharika Kumar
Accelera by Cummins and Ohio State University ‘ 0
7018 Stoney Ridge Drive, Columbus, IN -47201 accelera.

+1-812-341-0190 by Cummins
sharika.kumar@cummins.com

kumar.918@buckeyemail.osu.edu

sharikakkumar@gmail.com

Jeremy Daily
Associate Professor of
Systems Engineering | 9 i |
. . s 8 3 i ' \ g ~ SYSTEMS ENGINEERING
COloradO State Unlve rSlty ————— i | ‘ ; ; COLORADD STATE UNIVERSITY.
Jeremy.Daily@colostate.edu N A e ’

https://github.com/SystemCyber/ShimDLL §

mailto:sharikakkumar@gmail.com
mailto:kumar.918@buckeyemail.osu.edu
mailto:sharikakkumar@gmail.com
mailto:Jeremy.Daily@colostate.edu
https://github.com/SystemCyber/ShimDLL

	Securing Off-Board Vehicle Diagnostics
	Slide Number 2
	Medium and Heavy Duty (MHD) Network Communication
	Vehicle Diagnostic Adapters (VDAs)
	Simple RP1210 Example
	Simple RP1210 Example, cont.
	Simple RP1210 Example, cont.
	Observations
	Attacking Vehicle Diagnostic Adapter Drivers
	Slide Number 10
	Falsified Information displayed on a Diagnostic Tool
	Contributions
	Cyber Defense for Diagnostic Interfaces
	Complex Device Drivers based Security Sublayer for UDS Security
	UDS Session Encryption with Dynamic Keys
	Insight into Unsecured and Secured Communications
	XCP Protocol and its Security Challenges
	Securing XCP Sessions
	Summary and Conclusions
	Thank You

